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Related work
• Vibration-based eavesdropping 
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Our work

• Recover audio emitted from the earpiece

Eavesdropper Victim
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Principle

• Vibration coupling between the earpiece and the 
smartphone shell
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Threat model

• Attack scenario
• The victim uses the earpiece mode of his/her smartphone for 

phone calls/listening to voice messages, etc.
• The attacker aims to recover audible speech of the smartphone 

with portable attack devices remotely.

• Assumption
• Line-of-sight condition
• Attack distance > 2m
• No installed malware

Attacker Victim
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Feasibility study

• Experimental setting
• Phone calls
• Audio chirp: 0-2kHz
• Distance: 2m

• Tested smartphones
• Galaxy Note10
• Pixel 5
• Oneplus 8T
• Xiaomi 11

mmWave sensor Smartphone BSmartphone A

Loudspeaker
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Handhold condition
• Body movements can cause distortion on the recovered 

speech spectrogram.

Smartphone

sensor
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Long-range attack
• The SNR of recovered speech signal deteriorates with 

the increasing sensing distance.

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝛼𝛼𝜆𝜆2𝐺𝐺𝑇𝑇𝑇𝑇𝐺𝐺𝑅𝑅𝑇𝑇
(4𝜋𝜋)3𝑑𝑑4𝐹𝐹

Sensing distance
Noise floor

Tx/Rx gain



14

Summary of challenges

• Motion interference
• Low SNR

How to build a motion-resilient and long-range attack?
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System design

• Target localization (Range-FFT, Doppler-FFT, Angle-FFT)
• Clutter suppression (remove static/dynamic clutters)
• Speech enhancement (improve speech quality)
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• Cause: discontinuous phases between every two frames 
of demodulated mmWave signals

• Solution: Frame-aware detrend

Preprocessing

p(x)=p1xn+p2xn−1+...+pnx+pn+1
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• Irregular helical curves on the I/Q plane due to human 
movements

• Random noise on the recovered speech spectrogram

Clutter suppression
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• Solution

Clutter suppression
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• Generative adversarial network for denoising
• Data synthesization: public audio + mmWave noise
• Enhancement: the trained Generator

Speech enhancement
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• Input: raw recovered speech after clutter suppression
• Output: the enhanced speech 

Speech enhancement
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• Data collection
• AWR1843Boost
• DCA1000EVM

• Signal processing
• Laptop（Thinkpad T490）

• Model training
• Linux server
• GeForce RTX 3090*4

System setup

DCA1000EVM

AWR1843Boost

Laptop
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• Metric
• Peak Signal-to-Noise Ratio (PSNR) : quantify the speech 

quality (a higher PSNR indicates a better speech quality)
• Short-time Objective Intelligibility (STOI): quantify the speech 

intelligibility, with the score within [0,1] (the higher, the better)

• Dataset
• Speech corpus: Harvard Sentence * 100
• Collected from 23 different smartphone models

Metrics & Dataset
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• Recovered audio
• Microphone (GM-S801)
• Unprocessed (mmEve)
• Processed (mmEve)

Sound recovery

Speech recovery @ 6m

The motion interferences
are suppressed and the
speech quality is improved
by mmEve.
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• Experimental setting
• Distance: 2m~10m
• Laboratory

• Result 
• Distance 

Performance
• Performance @ 6m

• PSNR > 30dB
• STOI > 0.7

Attack distance



26

• Experimental setting
• Sit on a chair
• Stand and handhold
• Stand and move

• Result
• PSNR > 18dB
• STOI > 0.75

Handhold condition

25 1
Unprocessed
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• Twenty-three different smartphone models
• Samsung, Huawei, Oppo, iPhone, etc.

• Result: PSNR > 18dB, STOI > 0.7

Different smartphones
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• Resilient to handholding habits / CPU load / acoustic noise

Complex condition
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• Active methods
• Detect the malicious signals (77-81GHz) with sniffers
• Jamming malicious devices 

• Passive methods
• Vibration damping (mitigate the vibration coupling)
• Wave-absorbing materials (reduce the SNR of reflected signals)
• Manipulate reflected signals with smart reflectors

Defense
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• We revealed a speech threat of smartphones posed by 
COTS mmWave sensors.

• We proposed an end-to-end system to recover audible 
speech from smartphone earpiece.

• We performed extensive experiments to investigate the 
threat level of the attack and gave the countermeasures.

Conclusion
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Thanks for listening!
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