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ABSTRACT

With the advance in automatic speech recognition, voice user inter-

face has gained popularity recently. Since the COVID-19 pandemic,

VUI is increasingly preferred in online communication due to its

non-contact. Additionally, various ambient noise impedes the pub-

lic applications of voice user interfaces due to the requirement of

audio-only speech recognition methods for a high signal-to-noise

ratio. In this paper, we present Wavoice, the first noise-resistant
multi-modal speech recognition system that fuses two distinct voice

sensing modalities, i.e., millimeter-wave (mmWave) signals and au-

dio signals from a microphone, together. One key contribution

is that we model the inherent correlation between mmWave and

audio signals. Based on it, Wavoice facilitates the real-time noise-

resistant voice activity detection and user targeting from multiple

speakers. Furthermore, we elaborate on two novel modules into the

neural attention mechanism for multi-modal signals fusion, and

result in accurate speech recognition. Extensive experiments verify

Wavoice’s effectiveness under various conditions with the charac-

ter recognition error rate below 1% in a range of 7 meters. Wavoice
outperforms existing audio-only speech recognition methods with

lower character error rate and word error rate. The evaluation in

complex scenes validates the robustness of Wavoice.
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1 INTRODUCTION

Voice user interface (VUI) plays an essential role in intelligent

scenes, e.g. smart homes [41]. It provides a hands-free and eyes-

free human-machine interaction between humans and Internet of

Things devices. Benefiting from the development of deep learning

and natural language process, the automatic speech recognition

(ASR) entitles VUI to the capacity of accurate comprehension on

users’ intentions [77]. With such a convenient and flexible service,

users can interact with various devices as they please. Commercial

VUI products have gained in popularity over recent years, such

as smart speakers (e.g., Amazon Echo [4] and Google Home [17]),

voice assistants in smartphones (e.g. Siri [25]), and in-vehicle voice

control interactions (e.g. VUIs in Tesla Model S/X/3/Y [58]). An-

alysts forecast that by 2024, the deployment of VUI-based smart

speakers will reach 640 million globally [70].

Nowadays, VUI tends to branch out into the smart city busi-

ness [19]. Non-contact interaction, represented by VUI, has been

widely deployed in public places [67]. It gradually replaces tradi-

tional contact interaction such as button or touch interactions [44].

Especially due to the corona virus disease-19 (COVID-19) pandemic

[26], people avoid physical contact with public facilities for safety

reasons. For example, VUIs have been exploited for voice-controlled

elevators [55] and ATMs [71]. Different from home scenes, VUI

needs to address more multifarious ambient noise (e.g. traffic noise,

commercial noise, and nearby voices) in public places (e.g. streets,

stations, halls, or parties). However, audio-based ASR techniques

based on microphone arrays, including traditional statistic-based

[21, 72] and advanced learning-based [46, 76], require clear audio

signals with a high signal-to-noise ratio (SNR). Hence in public

applications, audio signals, drowned in the unpredictable noise,

become difficult to identify. Additionally, to protect themselves

from the corona virus, people prefer to wear respiratory protective

face masks [42], which further degrades acoustic quality and en-

cumbers speech recognition accuracy [42]. Audio-only methods

are incompetent to support VUI in these cases.

To address these difficulties above, researchers exploit multi-

sensor information fusion for speech enhancement and recognition.
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Figure 1: An application scenario for Wavoice in the case of

smart city. Users can interact with a Wavoice-powered smart

streetlight that provides services including location, naviga-

tion, emergency calling, and voice-controlled traffic lights.

Audio-visual methods [1, 43] integrate lip motion captured by cam-

eras with noisy voices, but are limited by lighting conditions, line-

of-sight requirement, or face masks. Ultrasound-assisted speech

enhancement techniques [30, 56] are merely applied into condi-

tional scenes on account of the extremely short working distance

(within 20cm) and specific postural requirements.

We turn attention to millimeter wave (mmWave) radars, and

leverage it as a supplementary for speech recognition. It has been

demonstrated that mmWave signals contribute to voice informa-

tion recovery with excellent performance on resistance to ambient

noise and penetration [35, 75]. Those signals can detect the vo-

cal vibration by analyzing reflected signals of remote target users

even wearing face masks in a noisy environment. Nevertheless,

mmWave radars do not always perform satisfactorily. Due to the

tinywavelength (about 4mm), mmWave signals are sensitive to both

vocal vibration and motion. They would be affected by users’ body

movement in practice. To make matters worse, mmWave radars are

likely to shake in specific scenarios, e.g. vehicle applications. Motion

interference, ignored by prior work [75], would distort reflected

signals that contain vocal information of users. mmWave-based ap-

plications always suffer from such motion interference from users,

radars, or both. Fortunately, microphone-based voice collection can

compensate for the loss of information to some extent. Therefore,

we consider the complementary collaboration between a mmWave

radar and a microphone. These two signals of different modalities

are employed together for accurate speech recognition. Here, the

mmWave signal encourages noise-resistant speech sensing in spite

of face masks, while the audio signal collected by a microphone

serves as a guide to calibrate speech features in the mmWave signal

under motion interference.

To realize the multi-modal system that combines mmWave and

audio signals for speech recognition in complex scenes, multiple

practical challenges need to be addressed. (1) How to fuse signals

of different modalities to support long-distance VUI applications,

while mmWave and audio signals may suffer from noise. (2) How

to detect voice activity in an effective and real-time manner, when

user’s voice is probable to be overlapped by multiple noises. (3) How

to apply this ASR system in a multi-person scene, where irrelevant

conversation may disturb users’ voice commands.

We propose Wavoice, a multi-modal speech recognition system

for public VUI applications, as illustrated in Figure 1. It exploits

a mmWave radar for detecting users’ vocal vibration in noisy en-

vironments, and a microphone in case of the motion interference.

Moreover, it is able to penetrate through face masks for speech

information extraction. To combine their advantages, we investi-

gate the inherent correlation between mmWave and audio signals.

For practical application, we design real-time and anti-interference

voice activity detection and user targeting methods based on the

frequency-dependent property between these multi-modal signals.

Furthermore, we introduce two novel modules into the neural at-

tention mechanism for the ASR-oriented multi-modal fusion. One

module exchanges valid features for mutual recalibration and char-

acteristic enhancement, while the other module projects respective

information into a joint feature space and adjusts weight coeffi-

cients dynamically. Therefore, we integrate multi-model signals for

semantic features enhancement. As a result, the utterance informa-

tion is predicted. Compared with audio-only or mmWave-only ASR,

Wavoice affords long-distance, noise-resistant, and motion-robust

speech recognition in public applications. We demonstrate its ef-

fectiveness in various scenarios with a low recognition error rate.

Particularly, it can be adopted into in-vehicle applications against

interference of various practical motions.

In conclusion, our contributions are as follows:

• We design a multi-modal ASR system named Wavoice for VUI’s

public application. It fuses mmWave and audio signals to facilitate

accurate speech recognition in case of noise, motion interference

under complex conditions.

• We investigate the inherent correlation between mmWave and

audio signals with a mathematical model. Accordingly, we pro-

pose real-time and anti-interference methods for voice activity

detection and user targeting respectively.

• We refine the attention-based multi-modal fusion network with

cross-modal recalibration. It supports the robustness of Wavoice
and improves its sensing distance. Results show the character

recognition error rate below 1% in a range of 7 meters even under

unfavorable conditions.

2 BACKGROUND

In this section, we briefly introduce the mechanism of mmWave

sensing, especially in the field of vocal vibration sensing, and the

attention mechanism for information fusion.

2.1 mmWave Sensing Mechanism

The frequency modulated continuous wave (FMCW) radar is widely

used to transmit mmWave signals for the perception of the physical

world to capture. It performs well in tiny displacement measure-

ment as well as cover penetration [35, 75].

Distance Estimation. The FMCW radar transmits chirp signals,

whose frequency changes linearly in a specific range periodically.

The receive antenna in the radar captures the reflective chirp signal

from the object. The received chirp is immediately mixed with the

transmitted chirp by a mixer to obtain the mixed signal. The mixed

signal, including a replica of the transmitted signal, is filtered out

by a low-pass filter to obtain the intermediate frequency (IF) signal.

Analysing the spectrum of IF signals, we can estimate the distance

𝑑 between the object and the radar as follows:

𝑑 =
𝑐 𝑓𝐼𝐹𝑇𝑐
2𝐵

, (1)
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where the 𝑐 denotes the speed of light, 𝑇𝑐 is the duration of a chirp,

𝑓𝐼𝐹 is the frequency of IF, and 𝐵 is the bandwidth of a chirp.

Angle Estimation. An FMCW radar can estimate the angle of

arrival (AoA), the elevation angle of reflected signals. It employs

multiple antennas where the differential distance from the detected

object to each antenna results in a phase change 𝜔 . We can obtain

AoA as follows,

𝐴𝑜𝐴 = arcsin (
𝜆𝜔

2𝜋𝑙
), (2)

where 𝜆 is the wavelength and 𝑙 represents the distance between
the receiving antennas.

Speech Sensing.Due to the sensitivity to displacements, mmWave

signals are exploited for speech sensing [9, 22, 31, 33, 34, 75]. Re-

searchers started from themmWave-based vocal vibration detection

against noise interference [33, 34]. Further research [9, 22, 75] lever-

aged mmWave to capture vocal vibration for the reconstruction of

genuine speech. Additionally, a mmWave radar can distinguish sub-

tle differences of users’ vocal vibration, whose uniqueness supports

a mmWave-assistant non-contact voice authentication. However,

above systems [9, 22, 33, 34, 75] have a limited sensing distance of

at most 2 meters. Moreover, they are vulnerable to motion influ-

ence. The short sensing range and vulnerability to motion restrict

mmWave-based systems’ application in practice, especially the

public speech recognition.

2.2 Attention Mechanism for Fusion

We aim at a multi-modal speech recognition system based on the

mmWave and audio signals. The key issue is to maximum advan-

tages of both signals to deal with complex scenes such as ambient

noise and long-distance sensing. voting mechanism [48] seems to

be a convenient assistant to the multi-modal fusion. It selects the

better results from simultaneous signals of different modalities as

final ones. It can compensate for information loss if one kind of

signal is ruined. However, mmWave and audio signals are likely to

be corrupted simultaneously. For example, users may fidget while

calling on ASR-based devices in a noisy environment. Furthermore,

in long-distance sensing tasks, the acoustic attenuation would in-

duce a further cut in the audio SNR, while significant multipath

effect of mmWave signals introduces additional noise masking valid

information.In this case, a simple voting mechanism cannot afford

a long-distance speech recognition.

Attention-based networks may provide a possible solution. At-

tention mechanism has been widely used in the information fusion

[32, 40, 57]. Incorporating attention modules into deep neural net-

works (DNNs) has shown significant success across multiple fields,

such as natural language processing [63] and computer vision tasks

[23]. Various attention modules [24, 40, 51] are proposed for the

better fusion. In particular, efficient channel attention (ECA) [51]

performs well in guiding networks to notice important knowledge.

Inspired by this, we integrate ECA blocks into classical DNN with

two additional novel modules (See Section 4.3) for the fusion of

mmWave and audio signals.

3 CORRELATION MODEL

In this section, we exploit the relationship between voice signals

and reflected mmWave signals with a theoretical model. It is funda-

mental for the fusion of multi-modal signals.

Human voice basically depends on the vocal fold vibration. The

vocal vibration process can be regraded as a one-degree-of-freedom

damping system [11]. We have

𝑚 �𝑥 (𝑡) + 𝑟 �𝑥 (𝑡) + 𝑘𝑥 (𝑡) = 𝑒 𝑗 (2𝜋 𝑓𝐹 𝑡+𝜙𝐹 ) , (3)

where𝑚, 𝑟 , and 𝑘 are parameters decided by the vocal fold, and

𝑒 𝑗 (2𝜋 𝑓𝐹 𝑡+𝜙𝐹 ) is the negative coulomb force with the frequency 𝑓𝐹
and the initial phase 𝜙𝐹 . As a result, we obtain the vocal fold vibra-

tion velocity 𝑥 (𝑡) as follows,

𝑥 (𝑡) = 𝑘𝑒 𝑗 (2𝜋 𝑓𝐹 𝑡+𝜙𝐹 +𝜙𝑘 ) ,

�𝑥 (𝑡) = 𝑗𝜙𝐹𝑘𝑒
𝑗 (2𝜋 𝑓𝐹 𝑡+𝜙𝐹 +𝜙𝑘 ) = 𝑗𝜙𝐹𝑥 (𝑡),

(4)

where 𝑘 is the amplitude gain and 𝜙𝑘 is the phase lag.

Audio signals record human voice without distortion through

microphones. Typically, they are considered as a compound of series

of single-frequency tones [21, 72] looking like

𝑣 (𝑡) =
∑
𝑖

𝐴𝑖𝑠𝑖𝑛(2𝜋 𝑓𝑖𝑡 + 𝜃𝑖 ), (5)

where 𝑣 (𝑡) is the human voice, and 𝐴𝑖 , 𝑓𝑖 , and 𝜃𝑖 are respectively
amplitude, frequency, and phase of the 𝑖-th harmonic. Its base-

band frequencies are equivalent or close to the speed of vocal fold

vibration [75]. The relationship can be simplified as

𝑣 (𝑡) = 𝐻 ( �𝑥 (𝑡)) = 𝐻 ( 𝑗𝜙𝐹𝑥 (𝑡)), (6)

where 𝐻 (·) is the transfer function from the vocal fold vibration

velocity �𝑥 (𝑡) to human voice 𝑣 (𝑡).
mmWave-based vocal vibration sensing compares the phase

difference of reflected signals for vibration measures. The reflected

mmWave signals 𝑟 (𝑡) from the vocal folds is represented as:

𝑟 (𝑡) = 𝑒 𝑗 (2𝜋 𝑓𝐼𝐹 𝑡+𝜙 (𝑡 )) , (7)

where 𝑓𝐼𝐹 is IF signal and 𝜙 (𝑡) is the phase of the reflected signal.

The displacement of vocal folds is contained in 𝜙 (𝑡) as follows,

𝜙 (𝑡) =
4𝜋 𝑓𝑚 (𝑡) (𝑑 + 𝑥 (𝑡))

𝑐
, (8)

where 𝑓𝑚 (𝑡) is the time-variant frequency of mmWave signal, 𝑑 is
the distance between the mmWave radar and the target user, and 𝑐
is mmWave’s speed. Since the motion of target objects or radars, if

any, is usually lower than sampling, 𝑑 can be deemed a constant in

a tiny time interval 𝑑𝑡 . By differentiating 𝜙 (𝑡), we have

Δ𝜙 (𝑡) = 𝜙 (𝑡 + 𝑑𝑡) − 𝜙 (𝑡)

=
2𝜋

𝑐
(𝑥 (𝑡)𝑑 𝑓𝑚 (𝑡) + 𝑓𝑚 (𝑡)𝑑𝑥 (𝑡)) ,

(9)

where𝑑 𝑓𝑚 (𝑡) is the frequency shift of FMCWmmWave signals, and

𝑑𝑥 (𝑡) is the displacement change in vocal fold. Here, 𝑑𝑡 and 𝑑 𝑓𝑚 (𝑡)
are fixed, determined by the mmWave radar’s sampling rate and

frequency variation rate respectively. Therefore, Δ𝜙 (𝑡) depends
exclusively on 𝑥 (𝑡), and we have

Δ𝜙 (𝑡) =
2𝜋

𝑐
(𝑑 𝑓𝑚 (𝑡) + 𝑓𝑚 (𝑡) 𝑗𝜙𝐹 )𝑥 (𝑡). (10)

It indicates that the phase difference of reflected mmWave signals

share the identical frequency with the vocal fold displacement.

The coherence between frequencies of differentmodal sig-

nals reveals the feasibility of their fusion. Specifically, both 𝑣 (𝑡) and
Δ𝜙 (𝑡) originate from the vocal fold displacement. According to Eq.
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Figure 2: Wavoice, a multi-modal speech recognition system that leverages a mmWave radar and a low-cost microphone to

improve the resistance against noise and motion interference in complex environment.

6 and Eq. 10, 𝑣 (𝑡) owns components whose frequency overlaps or

approaches the frequency of Δ𝜙 (𝑡). Furthermore, once the transfer

function 𝐻 (·) is determined, we can calculate signals of one modal

directly by the other one. In this paper, we entitle Wavoice noise-
resistant voice activity detection on the basis of this frequency-

dependent property and train a DNN to fusion multi-modal signals

for long-distance speech recognition.

4 SYSTEM DESIGN

In this section, we introduce Wavoice, which leverages mmWave

and audio signals to recognize the speech under complex condi-

tions. It consists of four modules, i.e., Voice Activity Detection, User

Targeting, Fusion Network, and Semantic Extraction, as presented in

Figure 2.

4.1 Voice Activity Detection

On the basis of the above frequency-dependent property, Wavoice
employs the coherent demodulation composed of a multiplier and

a filter. It has been proven to provide a noise-resistant method to

detect voice activities through the detection assessment.

Motivation. The real-time voice activity detection is a funda-

mental step for ASR. Without a proper detection mechanism, sig-

nificant resources would be wasted on dealing with meaningless

noise. However, intense noise is likely to cover human voices with

an extremely low SNR in public places. Face masks further blur

vocal features. Under these circumstances, audio-only voice activity

detection would make a wrong judgement and be not responsive

to users’ commands [27]. Users have to raise their voices or take

off their face masks, but this is inconvenient. Fortunately, voice ac-

tivities are recorded by mmWave and audio signals simultaneously.

We can leverage their coherence to amplify the difference between

noise and voice activities.

Solution. Wavoice draws the collective characteristic between
mmWave and audio signals for the accurate judgement in real time

through the coherent demodulation. Wavoice simultaneously re-

ceives signals of twomodalities. These signals are segmented into 3s

frames with a 50% overlap between successive frames. We perform

min-max scaling on the mmWave and audio signal respectively.

For collecting the mmWave signal, we perform range-FFT on the

received chirp signal to obtain the range information of objects. We

leverage the classic detection method named OS-CFAR[52] to detect

the objects, i.e., the FFT bin of the reflective object. The number of

detected objects is decided by the number of people and other ob-

jects such as furniture, since the objects cannot stack together due

to the radar’s 4 cm range resolution. Note that the radar receives the

genuine signal corresponding to voice activity and other irrelevant

signals. Therefore, we design the voice activity detection to distin-

guish the genuine signal. Audio signals are down-sampled to 16

kHz to save computational resources, and the down-sampled voice

signal 𝑣 (𝑛) still retains complete human speech information. We

obtain the sampling data from the object’s FFT bin per chirp signal.

Thus, the sampling duration of the preprocessed mmWave signal

is chirp duration. Then we up-sample the preprocessed mmWave

signal to 16 kHz by using linear interpolation.

We obtain the phase 𝜙 (𝑛) by conducting fast Fourier transform

on the sampled mmWave signal. Then the phase difference is

Δ𝜙 (𝑛) = 𝜙 (𝑛) − 𝜙 (𝑛 − 1) (𝑛 ∈ N+). (11)

Inspired by the frequency-dependent property between Δ𝜙 (𝑛) and
𝑣 (𝑛), we multiply them, followed a low-pass frequency filter for

voice activity detection. If Δ𝜙 (𝑛) and 𝑣 (𝑛) share components of

the same or similar frequency, we will obtain an energy peak at

low-frequency band after coherent demodulation [14]. We assume

𝐻 (·) = 1 here to illustrate this method’s effectiveness ad follows

F(𝑛) = LPF(𝑣 (𝑛) ∗ Δ𝜙 (𝑛))

= LPF(
2𝜋

𝑐
(𝑑 𝑓𝑚 (𝑛) + 𝑓𝑚 (𝑛) 𝑗𝜙𝐹 )𝑥

2 (𝑛))

=
2𝜋

𝑐
(𝑑 𝑓𝑚 (𝑛) + 𝑓𝑚 (𝑛) 𝑗𝜙𝐹 ),

(12)

where F is the residual low-frequency component, LPF(·) is a low-

pass frequency filter and the item 2𝜋
𝑐 (𝑑 𝑓𝑚 (𝑛) + 𝑓𝑚 (𝑛) 𝑗𝜙𝐹 ) is a

known low-frequency value. When the spectral entropy of F is

larger than a given threshold, vocal vibration is recorded simul-

taneously by Δ𝜙 (𝑛) and 𝑣 (𝑛) and it indicates that voice activities

occur. Even if noise ruins audio, mmWave signals, or even worse

both, the coherent demodulation still works due to the difference

between noises and voice signals in the frequency domain. In noisy

environment, Eq. 13 is rewritten as follows,

F(𝑛) = LPF((𝑣 (𝑛) + 𝑛𝑣 (𝑛)) ∗ (Δ𝜙 (𝑛) + 𝑛𝜙 (𝑛)))

=
2𝜋

𝑐
(𝑑 𝑓𝑚 (𝑛) + 𝑓𝑚 (𝑛) 𝑗𝜙𝐹 ),

(13)

where 𝑛𝑣 (𝑛) and 𝑛𝜙 (𝑛) are the noise on mmWave and audio signals

respectively. High-frequency items𝑥 (𝑛)∗(( 2𝜋𝑐 (𝑑 𝑓𝑚 (𝑛)+𝑓𝑚 (𝑛) 𝑗𝜙𝐹 ))∗
𝑛𝑣 (𝑛)+𝑛𝜙 (𝑛)) and𝑛𝑣 (𝑛)𝑛𝜙 (𝑛) are introduced by noise but removed

by the filter with little influence left. Since the duration of chirp

signals is very short, i.e., 260s in the experimental setting, the phase

offset in the mmWave chirp duration can be considered constant.

The phase offset can be counteracted when differencing the phase.
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Therefore, the phase offset has little effect on the multiplication

results.

Detection Assessment. To investigate the effectiveness of the

proposed detection module, we collect corresponding mmWave

and audio signals from five subjects. During the collection, we ask

each subject in 4 kinds of noisy environments (detailed setup in

Section 5.1) to remain quiet after continuously speaking utterances.

After extracting the phase difference of mmWave signals, we gen-

erate the low-frequency component F by multiplying the phase

difference with the audio signal. As illustrated in Figure 3, F ranges

in the low-frequency band typically within 200Hz, while the multi-

plication corresponding to the non-speech segment cannot be seen

as anything useful. Vividly, the non-speech and speech segment

is explicitly divided after the coherent demodulation. In addition,

the varying spectrogram of mmWave signals in Figure 3 supports

mmWave signals’ ability of the vocal vibration seizing. Empirically,

the cut-off frequency of a low-pass filter is set to 300Hz and the

threshold of spectral entropy is set to 0.835. By comparing the

spectral entropy of F with the given experiential threshold, we can

detect voice activity with an accuracy of 97.12%. On the contrary,

the voice activity detection based on individual audio or mmWave

signals only has 56.48% and 88.92%, respectively. Additionally, the

whole process is finished within 50 ms. Wavoice manages in the

real-time voice activity detection against various noise interference.
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Figure 3: Though audio signals are noisy, the multiplication

introduces an additional low-frequency component that re-

sults in a sharp distinction between noise and noisy speech.

4.2 User Targeting

Speeches from surrounding non-target individuals may overlap

users’ commands. Wavoice proposes a targeting mechanism to de-

rive vocal commands of target objectives against such interference.

Motivation. In a multi-person scenario, surrounding speeches

would colour the recognition results of ASR. These voice noises

are mingled with valid vocal commands, or even cover up them

in audio signals recorded by microphones due to the mask effect

[14]. The audio-only ASR hardly distinguishes the target user who

speaks the wake-up word for the voice interaction from others.

Solution. In Wavoice, we propose a user targeting mechanism.

It detects the predetermined wake-up word by successively com-

paring each low-frequency component by multiplying mmWave

signals with audio signals after voice activity detection. Notwith-

standing mmWave signals sensing wake-up words, it is suscepti-

ble to motion interference and other multipath noise. In contrast,

Wavoice can precisely target the user’s command based on the

correlation between mmWave and speech signals. Once finding the

wake-up word, Wavoice separates its reflected mmWave signals

and ignores other multipath signals from ambient people. It targets

this objective and waits for subsequent commands.

The radar receives multiple reflected signals from people around,

while the microphone records the speech mixed with other per-

sons’ voices. Multiple reflected mmWave signals can be formulated

as: 𝑟1 (𝑛), 𝑟2 (𝑛), 𝑟𝑖 (𝑛), ..., 𝑟𝑢 (𝑛), 𝑟𝑚 (𝑛), where the subscript𝑚 is the

number of received mmWave signals decided by the number of per-

son in the sensing ranges after voice activity detection, 𝑟𝑖 (𝑛) is the
mmWave signal of the 𝑖-th person and 𝑟𝑢 (𝑛) is the mmWave signal

caused by the wake-up word from a user. We extract the correspond-

ing difference of phase Δ𝜙1 (𝑛),Δ𝜙2 (𝑛),Δ𝜙𝑖 (𝑛), ...,Δ𝜙𝑢 (𝑛),Δ𝜙𝑚 (𝑛)
from all reflected signals. We repeat the above coherent demodula-

tion between each mmWave signal and audio signals. Non-vocal

items are ignored. Afterwards, we leverage a one-class support vec-

tor machine (OC-SVM) to distinguish wake-up words from residual

voice-related items. However, throwing the unprocessed multipli-

cation production into the OC-SVM is easy to increase the risk

of model overfitting substantially. Instead, we extract the linear

predictive coding (LPC) as input to OC-SVM as follows,

F𝑖 (𝑛) = −

𝑝∑
𝑘=1

𝑎𝑘𝑖 F𝑖 (𝑛 − 𝑘) + 𝜀𝑣 (𝑛), (14)

where 𝑝 is the order of the linear prediction filter, 𝜀𝑣 (𝑛) is resid-

ual prediction error, and the set of 𝑎𝑘𝑖 is the LPC. LPC features

of different words have a remarkable difference. Benefiting from

this property, we train the OC-SVM with LPC features to iden-

tify wake-up words and target users. Similar to the above analysis

on noise cancellation, the motion influence on mmWave signals

is suppressed. LPC yields high accuracy and robustness with low

computational cost.

4.3 Fusion Network

The fusion network comprises residual blocks with ECA (ResECAs),

Recalibration Module (RM), and Projection Module (PM) for multi-

modal signals fusion, as shown in Figure 2. The fusion network

refines characteristics and fuses features from different modalities

to learn a joint representation from multiple domains.The extracted

log-mel filterbank coefficients as network inputs followed by three

successive stacked ResECAs. The RM exchanges valid features for

mutual recalibration and characteristic enhancement, with recali-

brated features flowing into two successive stacked ResECAs. Lastly,

PM projects respective information into a joint feature space and

adjusts weight coefficients dynamically.

4.3.1 Log-mel Filterbank Coefficients.

We extract log-mel filterbank coefficients as network inputs from

audio signals and residual voice-related mmWave signals respec-

tively. In detail, we first apply a pre-emphasis filter to the prepro-

cessed audio signal. After pre-emphasis, we perform the short-time
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fourier transform (STFT) to measure the time and frequency domain

information. The STFT segments the audio signal into frames of 25

ms, with an overlap of 10 ms between successive frames. During

segmentation, we need to apply a Hamming window function to

frames to reduce spectral leakage. Then, the fourier transformed

audio signal passes through a set of band-pass triangular filters

known as mel-filter banks. Consequently, we calculate the loga-

rithmically compressed filter-output energy as log-mel filterbank

coefficient. The number of coefficients is equivalent to the number

of filters. In this paper, the filter bank comprises 40 filters covering

the frequency band within 8 kHz.

4.3.2 ResECA.

We construct two branches of ResECAs [51] to integrate the fea-

tures of two modalities. An ECA block is an attention-based block

that is made up of convolution layers, aiming to model interdepen-

dencies among channels of convolutional features. The ECA applies

the global average pooling (GAP) [24] to learn contextual informa-

tion in all receptive fields of networks instead of the limited local

field like traditional convolutional layers. Based on information in

all channels, the ECA generates the channel attention to enable the

network to focus on the more important region. Suppose the out-

put of one convolution layer is 𝑋 = [𝑥1, 𝑥2, · · · , 𝑥𝑐 ] , 𝑋 ∈ 𝑅𝐻×𝑊 ×𝐶 ,

where 𝐻 ,𝑊 , and 𝐶 are width, height, and channel dimension, 𝑥𝑐
refers to the produced channel feature of the 𝑐-𝑡ℎ filter in the convo-

lution layer. Then, GAP is applied to model channel-wise features

𝑍 = [𝑧1, 𝑧2, · · · , 𝑧𝑐 ] , 𝑍 ∈ 𝑅1×1×𝐶 , where the 𝑐-𝑡ℎ element of 𝑍

𝑧𝑐 = GAP(𝑥𝑐 ) =
1

𝐻 ×𝑊

𝐻∑
𝑖=1

𝑊∑
𝑗=1

𝑥𝑐 (𝑖, 𝑗). (15)

The channel-wise feature 𝑍 contains statistical information of all

channels. Then we calculate the attention feature

𝐴 = 𝜎 (C1D𝑘 (𝑍 )), (16)

where 𝐴 = [𝑎1, 𝑎2, · · · , 𝑎𝑐 ] , 𝐴 ∈ 𝑅1×1×𝐶 , 𝜎 is a sigmoid activation

function, and C1D𝑘 represents one dimension convolution with

kernel size 𝑘 . The final output of the ECA block 𝑋 is obtained by

channel-wise multiplication between the 𝑋 and 𝐴:

𝑋 = 𝐴 � 𝑋, (17)

where � indicates scalar multiplication. The attention feature 𝐴
contains dynamic channel information that is continually optimized

in the iteration. We concatenate a typical residual block and an ECA

block to construct a ResECA as a basic module in the network. It

can be formulated as:

𝑌 = C (ECA(C(𝑋,𝑊𝐶 )),𝑊𝐶 ) + 𝑋, (18)

where the function C(∗,𝑊𝐶 ) represents multiple convolution layers

to capture features,𝑌 denotes the output of the ResECA, and ECA(·)

represents the ECA block. The operation C+𝑋 represents a shortcut

connection. The output frommultiple successive convolution layers

flows into the ECA block. After computing results through the

attention procedure in ECA, a shortcut connection adds the residual

block’s input and the result of the ECA block to attain the final

output of the ResECA.

GAP

GAP ( )
( )

Figure 4: Architecture of Recalibration Module (RM). RM

generates recalibrated features by combining original fea-

tures with these from the other modality.

4.3.3 Recalibration Module.

Adevised RecalibrationModule (RM) is embedded into the fusion

network to integrate multi-modal features from different subnet-

works for multi-modal recalibration. In the following, we will first

describe the aim of RM and then introduce the mechanism of RM.

Motivation. Multi-modal recalibration is the process of com-

bining and complementing relevant information among different

modalities, leading to the performance of multi-modal fusion over

using only one modality. In traditional networks, features of dif-

ferent modalities are processed in a separate branch composed

by several ResECAs. However, stacked ResECAs only provide uni-

modal features rather than multi-modal features. However, such a

parallel-branch structure ignores the inherent correlation between

mmWave and audio signals.We need to establish the interaction and

collaboration of features of two modalities. More specifically, if the

speech feature suffers interference and attenuation, the mmWave

feature is required to guide the network framework to capture

underlying representation and supply the knowledge of vocal vi-

bration to the speech. Considering the impact of multipath noise

and body motion on mmWave signals, the speech feature is obliged

to recalibrate mmWave features.

Solution. We design a novel attention-based module, RM, as

an intermediate module to integrate features of two modalities.

Its structure is illustrated in Figure 4. It is inserted behind the

third ResECA so that features of two modalities from each branch

flow into the RM for mutual recalibration. We assume that 𝑋𝑊 ∈

𝑅𝐻×𝑊 ×𝐶 and𝑋𝑆 are two intermediate feature maps from their own

stream. The subscript𝑊 and 𝑆 individually represent the mmWave

and speech feature. The channel attention map 𝑌𝑊 and 𝑌𝑆 are

𝑌𝑊 = 𝜎 (𝑊𝑊 ReLU(GAP(𝑋𝑊 ))), 𝑌𝑊 ∈ 𝑅1×1×𝐶 , (19)

𝑌𝑆 = 𝜎 (𝑊𝑆ReLU(GAP(𝑋𝑆 ))), 𝑌𝑆 ∈ 𝑅1×1×𝐶 , (20)

where ReLU is a rectified linear unit (ReLU) function and𝑊 indi-

cates learnable parameter matrix. Each stream of channel feature

maps is considered as a feature detector and filter. We implement

mutual feature recalibration as follows,

𝑋𝑊 = 𝑌𝑆 � 𝑋𝑊 + 𝑋𝑊 , 𝑋𝑊 ∈ 𝑅𝐻×𝑊 ×𝐶 , (21)

𝑋𝑆 = 𝑌𝑊 � 𝑋𝑆 + 𝑋𝑆 , 𝑋𝑆 ∈ 𝑅𝐻×𝑊 ×𝐶 , (22)

where 𝑋𝑊 and 𝑋𝑆 are final outputs of RM. Therefore, we obtain

the multi-modal features. Aggregating the original feature map
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Figure 5: Architecture of Projection Module (PM). PM con-

structs the similarity matrix based on features of two flat-

tened modalities to learn joint representation.

guarantees that the final output stores enough identical knowledge.

The produced multi-modal features embedded in original unimodal

features will supply meaningful contexts and suppress useless ones

to achieve recalibration. RM can be flexibly placed at different levels

in networks to integrate hierarchical features with different spatial

dimensions. Here, we place one RM in the middle to fuse mid-level

features. It empirically produces comprehensive high-level features

through joint recalibration [51].

4.3.4 Projection Module.

PM maps features of two modalities into a joint feature space. It

finally fuses multi-modal signals for speech recognition.

Motivation. Due to the difference of multi-modal signals, DNN

cannot fuse these signals and transform them into semantic infor-

mation directly. Tradition methods [46, 76] concatenate multiple

modalities from different streams directly. They ignore the dynamic

distribution of the weight across multi-modal features. Instead, the

joint feature [40] using typical methods focuses on all multi-modal

features equally, which costs large-scale training data to allow a

network to take full advantage of multi-modal features.

Solution. Inspired by the co-attention [40], we create another

novel attention-based module to project multi-modal features into

a joint feature space. This module called projection module (PM)

aims to adaptively emphasize more important features and suppress

less important ones in all elements of multi-modal features. Its

structure is illustrated in Figure 5. PM constructs the similarity

matrix of features of two modalities to measure the correlation

between each element of speech and each element of mmWave.

With the similarity matrix, we can respectively map each modality

into another modality space. It induces high attention weights for

the more distinct element in both modal spaces.

Given two feature maps𝑀 ∈ 𝑅𝐻×𝑊 ×𝐶 and 𝑉 ∈ 𝑅𝐻×𝑊 ×𝐶 from

their own stream, let 𝑀 denotes the mmWave feature map from

the corresponding branch, and 𝑉 denotes the speech feature map.

We firstly have to flatten 𝑀 and 𝑉 into 2D-tensors with height

C and width W × H. We estimate the correlations between 𝑀 ∈

𝑅𝐶×𝐻𝑊 and 𝑉 ∈ 𝑅𝐶×𝐻𝑊 by calculating the similarity matrix 𝑆 .
The similarity matrix between𝑀 and 𝑉 is defined as:

𝑆 = 𝑀𝑇𝑊mv𝑉 , 𝑆 ∈ 𝑅𝐻𝑊 ×𝐻𝑊 , (23)

where𝑊mv is a learnable weight matrix. Each column𝑚𝑖 in the

flattened matrix 𝑀 represents a feature vector of C dimension at

position 𝑖 ∈ [1, 2, · · · , 𝐻𝑊 ]. Each entry of 𝑆 reveals the correlations
between the corresponding column of𝑀 and𝑉 . We perform a row-

wise normalization to produce 𝑆𝑉 with a softmax function, and a

column-wise normalization to produce 𝑆𝑀 with a softmax function:

𝑆𝑀 = softmax(𝑆), 𝑆𝑀 ∈ 𝑅𝐻𝑊 ×𝐻𝑊 , (24)

𝑆𝑉 = softmax(𝑆T), 𝑆𝑉 ∈ 𝑅𝐻𝑊 ×𝐻𝑊 . (25)

The similarity matrix 𝑆𝑀 transfers mmWave feature space into

speech feature space (vice versa for 𝑆𝑉 ). And we have,

𝐶𝑀 = 𝑉 ⊗ 𝑆𝑀 , 𝐶𝑀 ∈ 𝑅𝐶×𝐻𝑊 , (26)

where ⊗ denotes matrix multiplication. Similarly, for the input

𝑉 , we compute attention contexts of the speech feature based on

every element of the mmWave, which is: 𝐶𝑉 = 𝑀 ⊗ 𝑆𝑉 . In order

to alleviate the underlying irrelevant interferences, we had better

restrict and weigh the knowledge from features of two modalities

than cope with all knowledge equally. Therefore, the final fusion

result 𝑍 is formulated as:

𝑍 =𝑊𝑍 {𝜎 (𝐶
𝑀 ) ·𝑀 + 𝜎 (𝐶𝑉 ) ·𝑉 }, 𝑍 ∈ 𝑅𝐶×𝐻𝑊 , (27)

where · denotes the Hadamard product and𝑊𝑍 is a learnable pa-

rameter matrix. The 𝑍 that represents features of two modalities

selectively integrates informative information. The fine-grained

element in 𝑍 associated with vocal vibration and acoustic charac-

teristics occupies a dominant position. Eventually, the fusion result

is fed into the Semantic Extraction to identify the speech contents.

4.4 Semantic Extraction

We utilize the typical speech-to-text translation system [64, 77]

to build the semantic extraction architecture. We choose Listen,

Attend, and Spell (LAS) [7], a widely used end-to-end deep learning

approach because of its excellent performance on small-scale train-

ing data. It does not rely on any assumptions about the probability

distribution of character sequences [49].

LAS is composed of two components: an encoder called listener

and a decoder called speller [7]. The listener maps the acoustic

feature into the hidden feature through the pyramidal bidirectional

long short term memory (pBLSTM). Each successive pBLSTM layer

reduces the feature in half before feeding it to the next layer. The

speller, a stacked recurrent neural network, computes the probabil-

ity of output character sequences. It applies a multi-head attention

mechanism to generate context vectors. Context vectors, distribu-

tion of characters, and decode states are all fed into the RNNs for

the decoder state. The posterior distribution is computed based on

the decoder state and context vector via a softmax function [49].

LAS is trained to maximize the logarithmic posterior probability of

the correct character sequence.

Here, we stack two pBLSTM layers as the listener while the

speller contains two LSTM layers and an output softmax layer.

With the aid of LAS, Wavoice extracts the semantic information

from the joint features.

5 EVALUATION

We implement the prototype of Wavoice using off-the-shelf de-

vices. We conduct a comprehensive evaluation on the recognition

accuracy and robustness of our system under various condition.
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5.1 Setup

Hardware.We implement our system on a low-cost microphone

[15], a COTS IWR1642BOOST radar [60] equipped with a data

collection board DCA1000EVM [59], and a laptop, as shown in

Figure 6. The IWR1642BOOST equipped with DCA1000EVM is

a 77 GHz mmWave radar that transmits FMCW continuously in

order to measure range as well as angle. The mmWave radar has

two transmit antennas and four receive antennas. Our commercial

radar has a wide enough sensing range: it has an azimuth field of

view of 120 degree, an azimuth resolution of 15 degree, and a high-

resolution elevation view of 30 degree. The radar transmits a 4 GHz

wide chirp signal starting from 77 GHz to 81 GHz, which yields

high ranging resolution. We configure the radar in our experiments

to transmit a chirp with 260𝜇𝑠 cycle time. The received channel

has a 5000k ADC sampling rate, and each received chirp contains

1024 sample data. The detailed configuration of our FMCW radar is

shown in Table 1. The configuration enables our radar to have the

range resolution of 3.75 cm and displacement resolution around

300𝜇𝑚.

Table 1: Configuration of the mmWave radar.

Parameter Value Parameter Value

No. of frames 320 Frame periodicity 50 ms

No. of chirp 190 Frequency slope 15 MHz/ µs

Idle time 10 µs Ramp end time 250 µs

Software. We connect and control the radar with mmWaveStu-

dio GUI [61] running in the laptop. The mmWaveStudio GUI con-

figures the radar parameters as described above. We write an APP

in MATLAB to control the microphone and mmWaveStudio GUI to

capture the mmWave and audio signal simultaneously. The source

codes are released at https://github.com/TitaniumLiu/Wavoice.

Dataset. In our experiments, we choose 40 voice commands from

ok-google.io [18] and Google speech commands [68] that involve

common voice commands words in all aspects. All 20 participants,

including ten females and ten females, whose ages range from

16 to 47, speak all commands in their normal speech speed and

volume, typically 65 dB sound pressure level (db-SPL) [53]. We

place the mmWave radar and microphone at a distance of seven

meter from the subject. We align the mmWave radar to the subject

and guarantee the mouth and neck of subjects within the sensing

range of the mmWave radar since our commercial radar has a wide

enough sensing range. The participants are asked to say all voice

commands 40 times in a controlled laboratory environment. In

mmWave 
radar

Microphone
Laptop

Figure 6: Experimental setup. AmmWave radar and amicro-

phone receive signals from subjects sitting 7 meters away.

all, we collect 32000 pairs of samples (i.e., the mmWave and audio

signal) for each situation. We randomly choose the sample from

two males and two females as the test dataset. We thereby have

25600 training data and 6400 testing data. During the experiment,

participants are required to wear various masks, undergo diverse

noise, sit at different angles and distances from the mmWave radar,

and perform several bodymotions. The experimental scenes include

an office room, a roadside, a cafe, and an in-vehicle. Note that we

explicitly tell the participants about the purpose of our experiments.

Our research is approved by IRB: ZJU2021-6.

5.2 Metrics and Baseline

We measure Wavoice’ speech recognition accuracy from the per-

spectives of both character and word with two following metrics.

We select DeepSpeech2 (DS2) [5] as our baseline system for the

performance comparison.

Character Error Rate (CER). ASR system outputs a word se-

quence made of characters, similar but not equal to reference tran-

scriptions. Several characters need to be substituted, deleted, and

inserted. CER is computed with the minimum number of operations

[78] as follows,

CER =
𝐼𝑐 + 𝑆𝑐 + 𝐷𝑐

𝑁𝑐
, (28)

where 𝑁𝑐 represents the total number of characters and the mini-

mum number of character insertions 𝐼𝑐 , substitutions 𝑆𝑐 , and dele-

tions 𝐷𝑐 required to transform the output into the reference tran-

scription. Lower CER indicates the better speech performance of

the ASR system.

Word Error Rate (WER).WER is the standard metric to eval-

uate the performance of ASR systems. It computes the errors from

the word level by comparing output word sequences with reference

transcriptions as follows,

WER =
𝐼𝑤 + 𝑆𝑤 + 𝐷𝑤

𝑁𝑤
, (29)

where 𝑁𝑤 is the number of total words, 𝐼𝑤 , 𝑆𝑤 , and 𝐷𝑤 represent

the number of insertions, substitution, and deletions. The number

of errors is the sum of substitution, deletions, and insertions. Lower

WER certainly indicates that the ASR of the system is more accurate

in recognizing speech.

Baseline. We select DeepSpeech2 (DS2)[5], a state-of-the-art

ASR for deployment into the production setting, as the baseline

system to confirm Wavoice’s effectiveness. DS2, initially based on

Baidu AI research labs, is one of the mainstreams that has changed

the structure of traditional ASR. The network configuration and

training parameter of DS2 are consistent with the official article

[5]. We implement the DS2 under three different trial conditions:

(1) We directly test the well pre-trained DS2 model on our collected

speech datasets. (2) We continually train the pre-trained model on

our datasets and then test it. (3) We train and test a DS2 model

totally on our datasets. We observe DS2’s CERs are respectively

90.60%, 71.22% and 34.46%. Therefore, we construct the baseline

results by implementing DS2 under the third condition.
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Figure 7: Performance of Wavoice and DeepSpeech2 (DS2)

under various ambient noises.

5.3 Overall Performance

We evaluate the overall performance of Wavoice when users are

in different states. Three in-lab experiments are conducted to as-

sess whether our multi-modal system can show excellent speech

recognition capacity over the standard ASR system. The follow-

ing factors: (1) Ambient Noise, (2) Mask, and (3) Multi-Person are

considered respectively in the three experiments.

5.3.1 Ambient Noise.

Ambient noise reduces SNRs of received voice commands and

interferes with the recognition accuracy. We evaluate the speech

recognition performance of Wavoice under four types of noise con-
ditions, i.e., chatting, traffic, music, and waterflow. When subjects

speak required voice commands, four loudspeakers play noises

with 60 db-SPL at 40 cm from the microphone of Wavoice, with
SNR of recorded audio signals within 5dB. Figure 7 presents the

performance of Wavoice and DS2 under different noise interfer-

ence. DS2 obtains the low recognition accuracy with the average

CER above 20% and the average WER above 40%. The background

noise explicitly degrades the speech recognition accuracy of tradi-

tional ASR systems.This is because audio-only methods like DS2

are sensitive to unpredictable and unknown noise. On the contrary,

Wavoice yields superior performance with the average CER within

1% and the average WER about 2.5%. Even in the worst case (i.e.

traffic noise interference), Wavoice maintains WER about merely

3% and CER below 1.5%. With all comparisons and observations

above, we conclude that Wavoice is extremely stable and effective

against ambient noise.
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Figure 8: Performance of Wavoice under various SNRs of au-
dio signals.

We further investigate the speech recognition capability of Wavoice
under different SNR conditions. We adjust the source intensity of

noise here to modify SNR from -20 dB to 5 dB, with Wavoice’s CER
shown in Figure 8. When the SNR is above 0 dB, Wavoicemaintains

a tiny error rate that is nearly constant as SNR changes. When the

SNR is above -10 dB, the CRE increases a little but keeps lower
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Figure 9: Performance of Wavoice and DeepSpeech2 (DS2) in-

fluenced by masks without noise.

than 1 %. Wavoice can extract and fuse semantic information from

mmWave and audio signals to achieve noise-resistant multi-modal

speech recognition. We observe that the CER of speech recognition

is stable as SNRs decrease under -15 dB. This is because acous-

tic information in audio signals vanishes in adversely low SNRs,

leading to the convergence of the multi-modal system. In this case,

the performance of Wavoice depends on mmWave radar merely.

In short, Wavoice obtains an accurate and noise-resistant speech

recognition by fusing mmWave and audio signals.

5.3.2 Mask.

We study the speech recognition capacity of Wavoice when

users wear face-masks and speak voice commands. We select some

typical masks: disposable medical masks, N95 respirator masks,

gas masks, and anti-dust masks. A series of experiments are con-

ducted where participants put on a given mask and speak words.

To further measure the proposed system’s penetration, we addi-

tionally require the subject to wear a scarf in one experiment. All

selected masks and their indexes are listed in Table 2. The speech

recognition results in Figure 9 show that diverse masks worn by

subjects degrade the acoustic properties and voice quality in differ-

ent extent. The speech recognition capacity of DP2 is dramatically

impacted by mask conditions, particularly when the air tightness

of the mask is relatively high. The results in Figure 9 show that

our system consistently outperforms the baseline when the subject

wears different masks. We observe that the CER of Wavoice is all
nearly 1% while the baseline is mostly above 5%, which confirms

our system’s effectiveness against acoustic degradation caused by

masks. Through the comparison, we validate that the fusion of

mmWave and audio signals can significantly enhance the speech

recognition performance regardless of mask conditions.

Table 2: Models of involved masks.

No. Type No. Type

1 Disposable medical mask 4 Scarf + N95 mask

2 Scarf 5 Gas mask

3 N95 respirator mask 6 Anti-dust mask

5.3.3 Multi-Person Scene.

In a multi-person scene, the radar in the system tends to receive

various reflected signals from people around. Those reflected signals

contain components unrelated to the user’s vocal vibration. To

investigate the effectiveness of the proposed targeting module, we

further conducted experiments in a multi-person scene. We asked

each of five subjects to take turns as the target user and the other

four subjects walked around and spoke freely in the meantime.
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Figure 10: Performance in a multi-person scene.

Except for speaking voice commands, each subject acting as the

user is requested to say the wake-up word 30 times for training

the classifier and 10 times for testing. The wake-up word is set to

"Wavoice". We thus collect the positive sample (i.e., the mmWave

and audio signal related to the wake-up word) and the negative

sample related to other utterances. To verify the performance of

targeting the user, we preprocess the sample to produce the LPC

feature and then use testing samples to examine the trained classi-

fier. We derive the receiver operating characteristic (ROC) curve as

shown in Figure 10(a). We observe that the user targeting module

achieves more than 98.8% true positive rate (TPR) and less than

1.1% false positive rate (FPR) with an equal error rate (EER) of

0.99%, which confirms the effectiveness of targeting the user in

a multi-person scene. Moreover, we evaluate the performance of

speech recognition under multi-person conditions. We measure

the CER of the system on recognizing speech as shown in Figure

10(b). By averaging the recognition result of commands from five

subjects, we get an overall speech recognition accuracy of 1.2%.

The results in Figure 10(b) demonstrate that the system is highly

effective against interference from people around.

5.4 Performance Comparison

In this section, we carry out the ablation study to quantify the fusion

of two modalities signals and our proposed fusion methods. In

comparison, we comprehensively validate our approach by ablating

specific components:

• Speech-only, where no mmWave is fused in our proposed net-

work. We clip off the subnetwork of speech in our fusion network.

• mmWave-only, where no speech is fused in our proposed net-

work. We clip off the subnetwork of mmWave in our fusion

network.

• Voting, where the result is generated by voting [48] between

two outputs from the two modified networks above, i.e., Speech-

only and mmWave-only. The weight coefficient of recognized

texts from the two networks will be updated during the training

iteration of the majority voting. The final result is decided by the

text which has higher confidence.

• W/O Fusion, where no proposed fusion module is performed.

The two subnetworks of our fusion network still receivemmWave

and audio signals separately. Then, features of two modalities

are concatenated and fed into the Semantic Extraction.

• W/OResECA, where no ResECA is performed. We replace ResE-

CAs with classic residual blocks.

• W/O RM, where no RM is performed. The two subnetworks

receive mmWave and audio signals separately. At last, the PM

receives the two individual features.

• W/O PM, where no PM is performed. The RM still recalibrates

the two features.

Moreover, except for DS2, we compare our model with another

state-of-the-art speech recognition network: Wav2Letter [50]. No-

tably, Wav2Letter, a structured-output learning approach based on

a variant of CTC, has an outstanding performance on noisy speech

[50]. All of the models are fairly and fully pre-trained on our col-

lected datasets and then validated on the same testing setup. The

results of comparison are shown in Table 3.

Table 3: Performance comparison among speech recogni-

tion methods under different conditions.

Method
Noise Mask

CER(%) WER(%) CER(%) WER(%)

Speech-only 45.18 73.24 8.12 29.66

mmWave-only 10.25 40.76 9.46 33.40

Voting [48] 10.78 48.20 5.37 20.21

W/O Fusion 12.71 35.38 6.43 29.20

DS2 [5] 41.12 72.70 7.13 30.32

Wav2Letter [50] 22.17 46.28 4.72 12.23

W/O ResECA 2.43 4.41 1.78 3.35

W/O RM 4.53 8.82 4.21 9.24

W/O PM 4.08 7.65 3.16 5.882

Wavoice 0.69 1.72 0.76 1.65

As shown in Table 3, audio-only methods (i.e., Speech-only, DS2,

andWav2Letter) present high CERs andWERs, especially in dealing

with noisy speech. Therefore, we speculate that unpredictable am-

bient noise impedes the performance of audio-only methods. The

mmWave-only method struggles in providing reliable results, attrib-

uted to its susceptibility to varying multipath noise and relatively

coarse-grained perception. However, Voting and W/O Fusion yield

slightly better results over the baseline with merely 10.78% CER and

12.71% CER in noise, which verifies that ignoring the correlation

and collaboration between mmWave and audio signals is unable to

exploit two modalities signals for utmost performance in speech

recognition. Meanwhile, our fusion modules improve W/O Fusion

by over 12% and 5% in terms of CER under different conditions.

Our system with fusion modules is superior to the Voting by 10%

and 4% in terms of CER in two different environments, respectively.

Besides, Wavoice outperforms WaveEar[75] whose WER is mostly

more than 4% , especially under motion interference. Moreover, we

conduct an ablation study by considering the different proposed

modules of the fusion network. The comparison result shows that

every module we propose plays a vital role in speech recognition

performance. In summary, our system with fusion modules outper-

forms the aforementioned methods. These experiments indicate

that our proposed fusion modules adequately utilize the correlation

between two modalities signals.

5.5 Robustness Analysis

We further analyze the robustness of Wavoice under the influence

of different distance and orientation, body motion, and environ-

mental disturbance. Note that the sensing distance of the radar and
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Figure 11: Performance centred by Wavoice.

microphone is still 7 meters in the body motion and environmental

disturbance circumstances.

5.5.1 Distance and Orientation.

We compare the performance of Wavoice when the user is lo-

cated at different distances and orientations of the mmWave radar.

In this experiment, the sensors, including the mmWave radar and

microphone, are set at different distances (from 1 m to 10 m) and

different orientations (from -60° to 60°) to the subjects’ mouth

and throat. The overall results are shown in Figure 11. When the

distance is larger than 9 m, the CER slightly increases as the dis-

tance increases. This is because when the energy of speech decays

rapidly, especially at exceedingly long distances, the microphone

thereby captures the raw speech from subjects. As for the orien-

tation, speech recognition results are less than 1.5% in all orienta-

tions when the distance is less than 9 meters. Our system’s speech

recognition performance is relatively stable and excellent as the

orientation changes. We envision that recorded omnidirectional

signals by the microphone are exploited to recalibrate and enhance

coarse-grained mmWave features in the proposed fusion network.

Our system can support flexible and convenient speech recognition

even though the user is in a remote location.

5.5.2 Body Motion.

We evaluate the robustness of Wavoice when users are in body

motion. We request five subjects to speak commands and perform

body motions, including making telephone calls, typing on phones,

shaking arms, and marching on the spot. We test the CER of five

subjects across different body motions and the corresponding re-

sults in Figure 12. As shown in Figure 12, the average CERs are

0.33% and 0.37% in the calling and typing smartphone, respectively,

while CERs are slightly high but are mostly less than 1% in other

body motions. The results further prove that Wavoice is robust

to the common body motion. When the user is in motion such

as march, the directly extracted phase across multiple FFT bins is

mixed up with motion interference. However, acoustic signals are

fused to recalibrate mmWave features and compensate for the loss

of information in the proposed system. Thus, motion interference

has a limited impact on the performance of the system.

5.5.3 Environmental Disturbance.

Since our experiments are set in our controlled laboratory envi-

ronment, we also evaluate the system in the real-world environment.

We conduct experiments on four types of scenes: a filled office, a

noisy cafe, a busy roadside, and a subway. We request five partic-

ipants to speak voice commands naturally and comfortably. The

collected data is fed into the pre-trained Wavoice modal to verify
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Figure 12: Performance under the body motion influence.
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Figure 13: Performance under environmental disturbance.

the universality. The results of speech recognition are shown in

Figure 13. The average CERs are 0.49%, 1.02%, 1.64%, and 1.77%, re-

spectively. Although the accuracy of speech recognition is slightly

degraded, the results in Figure 13 demonstrate the universality of

Wavoice in arbitrary realistic scenes.

We also study the generalization of Wavoice in a vehicle, where

the mmWave radar tends to wobble during driving. three subjects

are asked to speak commands as driving a vehicle. The mmWave

radar and microphone are appropriately placed on the automotive

center stack, which does not affect the subject’s driving. Figure

14(a) shows the experimental setup. Each subject drives 20 minutes

following the route shown in Figure 14(b) at the normal speed

in the urban area. To fully validate the generalization, when the

subject speaks commands, we play music in the vehicle during

driving. After attaining the two modalities signals during driving,

we examine the speech recognition capacity of Wavoice.

mmWave 
radar

Microphone

Laptop

(a) In-vehicle setup. (b) The driving route.

Figure 14: The setup in a vehicle for collecting data and the

corresponding driving route.

As we can see in Figure 15(a), the average CER stays below

0.5% as the driving distance rangs from 0 to 4 km. Figure 15(b)

shows that the CER of three subjects are 0.45%, 0.20%, and 0.30%

respectively, which indicates that the average CER is 0.32% in one

hour of driving time. The results demonstrate that our system

is competent for speech recognition in vehicles regardless of the

wobble of mmWave radar. This is reasonable because the mmWave

107



SenSys’21, November 15–17, 2021, Coimbra, Portugal T. Liu et al.

radar and microphone receive enough useful signals in a narrow

space to generate fusion features for accurate speech recognition.

6 DISCUSSION

Hardware Support. Compared with traditional ASR systems

[4, 17], Wavoice requires an additional mmWave radar but merely

one microphone. Nevertheless, mmWave radars diffuse rapidly with

the development of mmWave technologies in wireless sensing [54]

and 5G communication [66]. For example, Pixel 4 [16] has carried

the miniature mmWave radar for man-machine interaction. Fur-

thermore, various ambient noises requires excessive microphones.

Under a specific layout, microphone arrays demand a lager vol-

ume but obtain a small coverage. In this case, it is foreseeable that

Wavoice will be applied on voice-controlled devices for speech

recognition in various scenes.

Sensing Range. It has been demonstrated that Wavoice has a
range coverage of 10 meters with 120◦ field-of-view. It can deal

with most applications where users face sensors within a certain

deviation, such as voice-controlled elevators and ATMs. As for

applications in the fully open space, such as smart streetlights, it

requires at least three radars for a 360◦ coverage but increases costs.

A possible way is to rotate the mmWave radar with the aid of user

targeting, which has been applied in commercial wireless chargers

[74]. Furthermore, we can employ a microphone array rather than

a single one for the further sensing range extension.

Cost and Power Consumption. Wavoice requires a mmWave

radar and a low-cost microphone. Here, a mmWave radar chip costs

about 40 dollars [60] and a microphone costs about 10 cents. Con-

sidering the long sensing distance and the resistance against noise,

Wavoice is more affordable than the high-cost directional micro-

phone array, at an average price of around 50 dollars. Furthermore,

the cost of mmWave radars will reduce as its popularity and mass

production. As for the power Consumption, both mmWave radars

and microphones perform well. Their power consumption both

keep below than 20mW, which is acceptable for most VUIs.

Speech Separation. Speech Separation is the task of separating

and recovering the target speech from background interference

such as the cocktail party effect. Due to the benefit of speech sepa-

ration to VUIs, it is worth extending Wavoice to separate speech

from noisy signals. Motivated by the research on deep complex

networks [10, 62], Wavoice has the potential to achieve speech sep-

aration. Due to the flexibility of Wavoice, the complex network can

replace our semantic extraction network in the system to predict

the magnitude and phase spectrogram of target speech. Then, the

original speech can be estimated by performing the inverse Fourier

transform on the estimated spectrogram.

7 RELATEDWORK

mmWave-based Sensing benefits high precision sensing in

complex environments [8, 38, 39]. Chang et al. [8] leveraged a

spatial attention fusionmethod for obstacle detection by integrating

data from mmWave radar and vision sensor. The mmWave-vision

fusion can improve resolution and expand measuring ranges [12,

37, 79]. The mmWave radar also has comprehensive cooperation

with IMU to estimate ego-motion [3, 39]. Furthermore, Lu et al.

[38] reconstructed an indoor grid map with a mmWave radar and a
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Figure 15: Performance of Wavoice’s in-vehicle application.

lidar. Similar works displayed that the mmWave-lidar collaboration

benefits system stability [29, 73].

Speech Enhancement aims at improving the quality and intel-

ligibility of degraded speech in adverse listening conditions with

the aid of microphone arrays [6, 20, 28, 36, 45, 69]. Classic statistic-

based methods [21, 72] require prior knowledge about noise char-

acteristics. Learning-based techniques have gained in popularity

which leverage DNN [46, 76] or generative adversarial networks

(GANs) [13, 47] but fail in long-distance speech recognition.These

techniques demand excessive microphones (more than the number

of noise sources) and a particular layout. These requirements may

lead to a too large volume to be integrated into public application.

Cross-modal SpeechRecognition provides a new idea against

noise interference. Audio-visual means detect lip motion [1] or face

landmarks [43], while ultrasound-assisted techniques [30, 56] mea-

sure vocal vibration to extract target speeches. Moreover, WiFi

signals [65] and inertial signals [2] can recover semantic informa-

tion. Different from existing work, we fuse mmWave and audio

signals through the improved network with SENet-based inter-

attention. Wavoice supports long-distance speech cognition (up to

7 meters) in public places full of noise and motion interference.

8 CONCLUSION

In this paper, we employ a mmWave radar and a microphone for

long-distance, noise-resistant, and motion-robust speech recogni-

tion. We formulate the correlation between mmWave and speech

signals. Benefiting from this correlation, we propose a voice activity

detection method against noise interference and a user targeting

mean to avoid overlaps with non-target users. Two novel mod-

ules are introduced into an attention-based network based on the

inter-attention between multi-modal signals. Here, mmWave signal

improves recognition accuracy despite ambient noise or face masks,

while audio signals rectify errors caused by motions. Wavoicemain-

tains a low error rate within 1% and its range reaches up to 7 meters.

It provides a comprehensive solution to public applications of VUIs.
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